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Abstract—This paper proposes a new H-infinity quadratic tracking control (QTC) algorithm in linear discrete-
time systems. This algorithm is a counterpart of the H-infinity QTC algorithm in linear continuous-time systems 
based on the integral equation approach. The discrete-time state equation in this paper has the control and 
exogenous inputs. Theorem 1 shows that the control and exogenous inputs in the H-infinity linear QTC problem 
are given by solving the two-point boundary value problem (TPBVP). Based on the TPBVP, Theorem 2 presents 
the H-infinity linear QTC algorithm for the control and exogenous inputs. The inputs use the information of two 
functions, which are calculated in the reverse direction of time from their terminal conditions. The control and 
exogenous inputs use the information of the state. The state observer uses the output of the system to estimate the 
state. A numerical simulation example shows the tracking control characteristics of the output estimate to the 
desired value and the characteristics of the estimates of the control and exogenous inputs. For the infinite value of 
the constant disturbance attenuation level γ, the proposed H-infinity linear QTC algorithm reduces to the linear 
QTC algorithm. The problem that can be solved for the minimum value of γ is the H-infinity linear QTC problem. 
For smaller value than the minimum value of γ, the H-infinity linear QTC algorithm diverges. 
 
Keywords—H-infinity linear tracking control; Control input; Exogenous input; State observer; Discrete-time 
systems.   
     

1. INTRODUCTION  

In linear discrete-time systems, the control problems - such as  the linear quadratic 

regulator (LQR) problem [1-3], the linear quadratic tracking control (QTC) problem [1, 4-8], 

the H-infinity LQR problem [9-11], and the H-infinity linear QTC problem [12-16] - have 

been extensively studied. The optimal tracking control algorithm is proposed using the 

reinforcement learning method in linear discrete-time systems [4]. The Q-learning algorithm 

of the infinite horizon linear quadratic tracker (LQT) computes the control input in terms of 

the learned kernel matrix without using full information on the system dynamics in discrete-

time systems [5]. In [6], the optimal tracking control problem based on the reinforcement 

learning for linear discrete-time systems subject to multiple false data injection (FDI) attacks 

is considered. In [8], an iterative adaptive dynamic programming algorithm is proposed to 

solve the linear QTC problem without knowing the system dynamics. A value iteration 

technique is introduced to approximate the solution of the LQT Bellman optimality equation. 

The H-infinity linear tracking control algorithm in [12] is applicable to the state equation 

with a measurable reference signal term in addition to the control input and disturbance 

terms. In [13], the H-infinity linear preview control is applied to the servomechanism design. 

In the preview control, the future information of the reference signal or the disturbance is 

used. If the reference signal is constant, the disturbance in the augmented state equation 

becomes zero. In [14], the H-infinity linear tracking control algorithm is proposed for the 

observation equation with measurement noise. The H-infinity LQT simulation example in 
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[15] uses a discount factor of 0.98 for the value function. In [16], the discount factor in the 

disturbance attenuation condition is in the range (0,1). The discount factor for the value 

function in this paper is 1. The Q-learning-based H-infinity tracking control algorithm in [17] 

contains least-squares (LS) calculation. For linear continuous-time systems, the LQR and the 

H-infinity linear regulator are described [17, 18]. Based on an integral equation approach, the 

H-infinity linear QTC algorithm in continuous-time systems has been proposed [19]. Similar 

to the unified approach [19], this paper presents a new H-infinity linear QTC algorithm for 

discrete-time systems. In the H-infinity control problem [17, 18, 20], the system equation has 

the control input and the exogenous input (also called disturbance) in linear continuous-time 

systems. The discrete-time state equation in this paper has the control input and the 

exogenous input. Theorem 1 shows that the control and exogenous inputs in the H-infinity 

linear QTC problem are given by solving the two-point boundary value problem (TPBVP). 

Based on the TPBVP, Theorem 2 presents the H-infinity linear QTC control algorithm for the 

control and exogenous inputs. The inputs use the information of two functions, which are 

calculated in the reverse direction of time from their terminal conditions. The control and 

exogenous inputs use the information of the state. The state observer uses the output of the 

system to estimate the state. For the infinite value of the constant disturbance attenuation 

level, the proposed H-infinity linear QTC algorithm reduces to the linear QTC algorithm. 

The problem that can be solved for the minimum value of the constant disturbance 

attenuation level is the H-infinity tracking control problem. The H-infinity tracking control 

algorithm diverges for a smaller value than the minimum value of the constant disturbance 

attenuation level. 

Two numerical simulation examples in section 4 show the characteristics for tracking 

the output estimate to the desired value and the properties of the control and exogenous 

input estimates. In the first example, the H-infinity linear QTC algorithm is compared with 

the existing H-infinity LQT [15]. The tracking accuracy of the H-infinity linear QTC 

algorithm in this paper is superior to that of the H-infinity LQT [15]. In the second example, 

the H-infinity linear QTC algorithm of Theorem 2 is applied to the simulation for the 

discrete-time F16 aircraft model.  

2. H-INFINITY LINEAR QUADRATIC TRACKING CONTROL PROBLEM 

Let the state equation for the state 𝑥(𝑘)  and the output equation for the output 𝑧(𝑘)  be 

given by: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐺𝑢(𝑘), 𝑥(0) = 𝑐, 

𝐺 = [𝐺1 𝐺2], 𝑢(𝑘) = [
𝑢1(𝑘)
𝑢2(𝑘)

] , 

𝑧(𝑘) = 𝐶𝑥(𝑘), 

(1) 

where 𝑥(𝑘) ∈ 𝑅𝑛  is the state vector, 𝑢(𝑘) ∈ 𝑅𝑚  is the input, and 𝑧(𝑘) ∈ 𝑅𝑙  is the output. 

𝑢1(𝑘) ∈ 𝑅
𝑚1  and 𝑢2(𝑘) ∈ 𝑅

𝑚2 , 𝑚1 +𝑚2 = 𝑚 , are the control and exogenous inputs, 

respectively. Let us introduce ‖�̃�(𝑘)‖2
2 defined by Eq. (2). �̃�(𝑘) is referred to as a performance 

output [20].  

      ‖�̃�(𝑘)‖2
2 = (𝜂(𝑘) − 𝑧(𝑘))𝑇𝑄(𝑘)(𝜂(𝑘) − 𝑧(𝑘)) + 𝑢1

𝑇(𝑘)�̃�(𝑘)𝑢1(𝑘)  (2) 

Here, 𝜂(𝑘) is the desired value. 𝑄(𝑘) and �̃�(𝑘) are positive definite matrices. We consider the 

finite-horizon H-infinity linear QTC problem. The task of H-infinity optimal linear QTC is to 
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find the control input 𝑢1(𝑘) and exogenous input 𝑢2(𝑘) based on the disturbance attenuation 

condition in Eq. (3) for the minimum value of 𝛾. The problem of finding the minimum value 

of 𝛾 such that the H-infinity problem is solvable is called the H-infinity optimal problem. 

𝛾 > 0  is the constant disturbance attenuation level, and as it is reduced, the control 

performance improves. 

      ∑(𝜂(𝑘) − 𝑧(𝑘))𝑇𝑄(𝑘)(𝜂(𝑘) − 𝑧(𝑘))

𝐿

𝑘=0

+∑𝑢1
𝑇

𝐿

𝑘=0

(𝑘)�̃�(𝑘)𝑢1(𝑘) ≤ 𝛾
2∑𝑢2

𝑇(𝑘)

𝐿

𝑘=0

𝑢2(𝑘)

    

    (3) 

The finite-horizon H-infinity linear QTC problem is equivalently transformed into a two-

person zero-sum linear quadratic dynamic game [10, 16]. That is, given 𝛾2, we investigate the 

minimax problem to minimize the value function J(𝑥, 𝑢1, 𝑢2)  with respect to 𝑢1(𝑘)  and 

maximize J(𝑥, 𝑢1, 𝑢2) with respect to 𝑢2(𝑘).  

  J(𝑥, 𝑢1, 𝑢2) = ∑[(𝜂(𝑘) − 𝑧(𝑘))𝑇𝑄(𝑘)(𝜂(𝑘) − 𝑧(𝑘))

𝐿

𝑘=0

+ 𝑢1
𝑇(𝑘)�̃�(𝑘)𝑢1(𝑘) − 𝛾

2𝑢2
𝑇(𝑘)𝑢2(𝑘)] (4) 

The worst-case disturbance 𝑢2(𝑘) is the exogenous input, whereas 𝑢1(𝑘) is the     control 

input. Here, 𝑄(𝑘) and �̃�(𝑘) are symmetric positive definite matrices. Introducing     𝑅(𝑘) =

[
�̃�(𝑘) 0

0 −𝛾2𝐼𝑚2×𝑚2

], we can express Eq. (4) as follows.  

 𝐽(𝑥, 𝑢1, 𝑢2) = ∑[(𝜂(𝑘) − 𝑧(𝑘))𝑇𝑄(𝑘)(𝜂(𝑘) − 𝑧(𝑘))

𝐿

𝑘=0

+ 𝑢𝑇(𝑘)𝑅(𝑘)𝑢(𝑘)] (5) 

Eq. (5) represents the value function with the discount factor 1 for the H-infinity linear QTC 

problem in discrete-time systems. The state 𝑥(𝑘) is expressed as: 

 

𝑥(𝑘) = Φ(𝑘, 0)𝑐 +∑Φ(𝑘, 𝑖 + 1)𝐺𝑢(𝑖)

𝑘−1

𝑖=0

 

           = Φ(𝑘, 0)𝑐 +∑1(𝑘 − 𝑖 − 1)Φ(𝑘, 𝑖 + 1)𝐺𝑢(𝑖)

𝐿

𝑖=0

, 

1(𝛼) = {
1, 0 ≤ 𝛼,
0, 𝛼 < 0,

 

Φ(𝑘, 𝑠) = {
𝐴𝑘−𝑠,   0 ≤ 𝑠 < 𝑘,

𝐼,   𝑘 = 𝑠.
 

(6) 

Here, Φ(𝑘, 𝑠)  is the state-transition matrix. 1(𝛼)  represents the discrete-time unit step 

sequence. It should be noted that ∑ Φ(𝑘, 𝑖 + 1)𝐺𝑢(𝑖)𝑘−1
𝑖=0 = ∑ 1(𝑘 − 𝑖 − 1)Φ(𝑘, 𝑖 + 1)𝐺𝑢(𝑖)𝐿

𝑖=0  

holds. Substituting Eq. (6) into Eq. (5), we get: 

 

𝐽(𝑥, 𝑢1, 𝑢2) = ∑[(𝜂(𝑘) − 𝐶Φ(𝑘, 0)𝑐

𝐿

𝑘=0

− 𝐶∑1(𝑘 − 𝑖 − 1)Φ(𝑘, 𝑖 + 1)𝐺𝑢(𝑖))𝑇𝑄(𝑘)(𝜂(𝑘) − 𝐶Φ(𝑘, 0)𝑐

𝐿

𝑘=0

− 𝐶∑1(𝑘 − 𝑖 − 1)Φ(𝑘, 𝑖 + 1)𝐺𝑢(𝑖))

𝐿

𝑘=0

+ 𝑢(𝑘)𝑇𝑅(𝑘)𝑢(𝑘)]. 

(7) 

To minimize the value function in Eq. (7) with respect to 𝑢1(𝑘) and maximize Eq. (7) with 

respect to 𝑢2(𝑘), we use the calculus of variations. Let �̆�(𝑘) be a vector with components of 

the optimal control input and the optimal exogenous input. Let 𝜀 be a scalar parameter with 
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extremely small positive value in the interval 0 ≤ 𝑘 ≤ 𝐿. Suppose 𝑢(𝑘) has a variant 𝜀𝛾(𝑘) 

from �̆�(𝑘) as:  

 𝑢(𝑘) = �̆�(𝑘) + 𝜀𝛾(𝑘). (8) 

We substitute Eq. (8) into Eq. (7). In the calculation of the variation                              ∆𝐽 =

𝐽(𝑢(𝑘)) − 𝐽(�̆�(𝑘)) for the value function, the 𝜀 term is the first variation and the 𝜀2 term is the 

second variation. Setting the first variation to 0 yields the necessary condition for the optimal 

�̆�(𝑘) as:  

 
𝑅(𝑘)�̆�(𝑘) +∑∑1(𝑖 − 𝑘 − 1)1(𝑖 − 𝑗 − 1)𝐺𝑇ΦT(𝑖, 𝑘 + 1)𝐶𝑇𝑄(𝑖)𝐶Φ(𝑖, 𝑗 + 1)𝐺�̆�(𝑗)

𝐿

𝑗=0

𝐿

𝑖=0

 

= ∑ 1(𝑖 − 𝑘 − 1)𝐺𝑇Φ𝑇(𝑖, 𝑘 + 1)𝐶𝑇𝑄(𝑖)(𝜂(𝑖) − 𝐶Φ(𝑖, 0)𝑐)𝐿
𝑖=0 . 

(9) 

Introducing 

 𝐾(𝑘, 𝑗) =

{
 
 

 
 ∑ 𝐺𝑇Φ𝑇(𝑖, 𝑘 + 1)𝐶𝑇𝑄(𝑖)𝐶Φ(𝑖, 𝑗 + 1)

𝐿

𝑖=𝑘+1

, 0 ≤ 𝑗 ≤ 𝑘 ≤ 𝐿,

∑ 𝐺𝑇Φ𝑇(𝑖, 𝑘 + 1)𝐶𝑇𝑄(𝑖)𝐶Φ(𝑖, 𝑗 + 1)

𝐿

𝑖=𝑗+1

, 0 ≤ 𝑘 ≤ 𝑗 ≤ 𝐿,

 (10) 

and 

 𝑚(𝑘 + 1) = − ∑ 𝐺𝑇Φ𝑇(𝑖, 𝑘 + 1)𝐶𝑇𝑄(𝑖)(𝐶Φ(𝑖, 0)𝑐 − 𝜂(𝑖))

𝐿

𝑖=𝑘+1

, (11) 

we obtain the equation for the optimal �̆�(𝑘) as: 

 𝑅(𝑘)�̆�(𝑘) + ∑ 𝐾(𝑘, 𝑗)𝐺�̆�(𝑗)𝐿
𝑗=0 = 𝑚(𝑘 + 1). (12) 

The calculation that the second variation of ∆𝐽 is positive yields 𝑅(𝑘)𝛿𝑘,𝑠 + 𝐾(𝑘, 𝑠)𝐺 > 0. This 

inequality provides the sufficient condition for the value function J(𝑥, 𝑢1, 𝑢2) to be optimal for 

control input 𝑢1(𝑘)  and exogenous input 𝑢2(𝑘) . Here, 𝛿𝑘,𝑠  denotes the Kronecker delta 

function. 

Similar to the unified approach in [19], Theorem 1 proposes from Eqs. (10) to (12) the 

TPBVP for the control input 𝑢1(𝑘) and the exogenous input 𝑢2(𝑘) in linear discrete-time 

systems. Theorem 2 proposes the new H-infinity linear QTC algorithm.  

3. NEW H-INFINITY LINEAR QUADRATIC TRACKING CONTROL ALGORITHM 
AND STATE OBSERVER  

Theorem 1 proposes the TPBVP for the control input 𝑢1(𝑘) and the exogenous input 

𝑢2(𝑘).  

Theorem 1: Let the state-space model be given by Eq. (1) in linear discrete-time systems.  

Eqs. (10) to (12) in section 2 is transformed into the TPBVP in Eqs. (13) and (14). In the          

H-infinity linear QTC, the control input 𝑢1(𝑘) and the exogenous input 𝑢2(𝑘) are represented 

by Eqs. (15) and (16), respectively. Here, 𝜂(𝑘) is the desired value. 

 
𝛼(𝑘) = 𝐴𝑇𝛼(𝑘 + 1) − 𝐶𝑇𝑄(𝑘)(𝐶𝑥(𝑘) − 𝜂(𝑘)),  

Terminal condition: 𝛼(𝐿 + 1) = 0 
(13) 

 

𝑥(k + 1) = 𝐴𝑥(𝑘) + 𝐺𝑢(𝑘), 

                  = 𝐴𝑥(𝑘) + 𝐺1𝑢1(𝑘) + 𝐺2𝑢2(𝑘), 

Initial condition: 𝑥(0) = 𝑐 

(14) 
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Control input: 𝑢1(𝑘) 

 𝑢1(𝑘) = �̃�
−1(𝑘)𝐺1

𝑇𝛼(𝑘 + 1) (15) 

Exogenous input: 𝑢2(𝑘) 

 𝑢2(𝑘) = −𝛾
−2𝐺2

𝑇𝛼(𝑘 + 1) (16) 

Proof of Theorem 1 is deferred to Appendix A.  

For 𝛾 = ∞ the H-infinity linear QTC problem reduces to the linear QTC problem in 

discrete-time systems. Hence, Eqs. (13) and (15) coincide with Eqs. (3) and (5) in [5], where 

𝛼(𝑘) = −𝜆(𝑘). 

The estimate 𝑥(𝑘) of 𝑥(𝑘) is calculated by the state observer [21, 22]. The gain of the 

state observer is calculated with the pole placement method [21]. By using 𝑥(𝑘) instead of 

𝑥(𝑘), the estimates of 𝑢1(𝑘) and 𝑢2(𝑘) are denoted by �̂�1(𝑘) and �̂�2(𝑘), respectively. Apart 

from the state observer, the robust Chandrasekhar-type recursive least-squares Wiener filter 

is designed [23] in linear discrete-time stochastic systems. 

Fig. 1 illustrates the structure of the H-infinity linear tracking controller and the state 

observer.  

 

        Exogenous input 𝒖𝟐(𝒌)  

           𝒙(𝒌 + 𝟏) = 𝑨𝒙(𝒌) + 𝑮𝟏𝒖𝟏(𝒌) + 𝑮𝟐𝒖𝟐(𝒌)       Output 𝐳(𝐤) 

     Control input 𝒖𝟏(𝒌)         𝐳(𝐤) = 𝐂𝐱(𝐤)                                         

 

   

 

    

      H-infinity tracking controller                  State observer 

 
Fig. 1. Structure of H-infinity linear tracking controller and the state observer.  

 

Theorem 2 proposes the new H-infinity linear QTC algorithm for the estimates of the 

control input 𝑢1(𝑘) and the exogenous input 𝑢2(𝑘) from the TPBVP in Theorem 1. 

Theorem 2: Let 𝜂(𝑘)  be the desired value and 𝑅(𝑘)  be expressed by 

𝑅(𝑘) = [
�̃�(𝑘) 0

0 −𝛾2𝐼𝑚2×𝑚2

]. Let 𝑢(𝑘) has the components of the control input 𝑢1(𝑘) and the 

exogenous input 𝑢2(𝑘) as:  

 𝑢(𝑘) = [
𝑢1(𝑘)
𝑢2(𝑘)

], (17) 

then the estimate �̂�(𝑘) of 𝑢(𝑘) is calculated by Eqs. (18) to (22).  

 �̂�(𝑘) = [
�̂�1(𝑘)
�̂�2(𝑘)

], (18) 

 

�̂�(𝑘) = 𝑅−1(𝑘)𝐺𝑇{(𝐴𝑇)−1[𝐴T𝑃(𝑘 + 1)(𝐼 − 𝐺𝑅−1(𝑘)𝐺𝑇𝑃(𝑘 + 1))−1𝐴 + 𝐶𝑇𝑄(𝑘)𝐶]

− 𝐶𝑇𝑄(𝑘)𝐶}𝑥(𝑘) + 𝑅−1(𝑘)𝐺𝑇(A𝑇)−1{𝐴𝑇𝑃(𝑘 + 1)(𝐼

− 𝐺𝑅−1(𝑘)𝐺𝑇𝑃(𝑘 + 1))−1𝐺𝑅−1(𝑘)𝐺𝑇𝜉(𝑘 + 1) + AT𝜉(𝑘 + 1)

− 𝐶𝑇𝑄(𝑘)𝜂(𝑘)} + 𝑅−1(𝑘)𝐺𝑇(𝐴𝑇)−1𝐶𝑇𝑄(𝑘)𝜂(𝑘) 

(19) 

 
𝑃(𝑘) = 𝐴𝑇𝑃(𝑘 + 1)( 𝐼 − 𝐺𝑅−1(𝑘)𝐺𝑇𝑃(𝑘 + 1))−1𝐴 − 𝐶𝑇𝑄(𝑘)𝐶,  

Terminal condition: 𝑃(𝐿 + 1) = 0  
(20) 
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𝜉(𝑘) = 𝐴𝑇𝑃(𝑘 + 1)( 𝐼 − 𝐺𝑅−1(𝑘)𝐺𝑇𝑃(𝑘 + 1))−1𝐺𝑅−1(𝑘)𝐺𝑇𝜉(𝑘 + 1) + 𝐴𝑇𝜉(𝑘 + 1)

+ 𝐶𝑇𝑄(𝑘)𝜂(𝑘),  

Terminal condition: 𝜉(𝐿 + 1) = 0 

(21) 

In Eq. (19), 𝑥(𝑘), the estimate of the state 𝑥(𝑘) computed by the discrete-time state observer 

[21], is used instead of 𝑥(𝑘). The state observer has the form: 

 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐺𝑢(𝑘) + 𝐾(𝑧(𝑘) − 𝐶𝑥(𝑘)), 𝑥(0) = 0, (22) 

where 𝐾  is the observer gain. The observer gain is calculated using the pole placement 

method with 𝐴 − 𝐾𝐶 poles assigned [21]. 𝑃(𝑘) and 𝜉(𝑘) are computed from time 𝑘 = L + 1 in 

the reverse direction of time until steady-state values �̄� and �̄� are reached, respectively. The 

estimate �̂�(𝑘) of 𝑢(𝑘) is calculated by Eq. (19) using �̄� and �̄�. In (19), 𝑃(𝑘 + 1) and 𝜉(𝑘 + 1) 

are replaced with their stationary values �̄� and �̄�, respectively. 

Proof of Theorem 2 is deferred to Appendix B. Fig. 2 shows the flowchart for the          

H-infinity linear QTC algorithm of Theorem 2. 

 

 

 

 

 

            𝒌 = 𝟒𝟗𝟗,−𝟏, 𝟐𝟎𝟎 

 

 

 

 

 

 

 

 

 

                𝒌 = 𝟏, 𝟏𝟎𝟎 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Flowchart for H-infinity linear QTC algorithm of Theorem 2. 

 

Section 4 presents two numerical simulation examples to show the characteristics of the 

proposed H-infinity linear QTC algorithm. 

 

STOP
ここに数式を入力します。 

START
ここに数式を入力します。 

𝝃(𝒌) = 𝑨𝑻𝑷(𝒌 + 𝟏)( 𝑰 − 𝑮𝑹−𝟏(𝒌)𝑮𝑻𝑷(𝒌 + 𝟏))−𝟏𝑮𝑹−𝟏(𝒌)𝑮𝑻𝝃(𝒌 + 𝟏)

+ 𝑨𝑻𝝃(𝒌 + 𝟏) + 𝑪𝑻𝑸(𝒌)𝜼(𝒌) 

𝑷(𝒌) = 𝑨𝑻𝑷(𝒌 + 𝟏)( 𝑰 − 𝑮𝑹−𝟏(𝒌)𝑮𝑻𝑷(𝒌 + 𝟏))−𝟏𝑨− 𝑪𝑻𝑸(𝒌)𝑪, 

 

𝑷(𝑳 + 𝟏) = 𝟎, 𝝃(𝑳 + 𝟏) = 𝟎, 𝑳 = 𝟒𝟗𝟗  

(𝑳 = 𝟒𝟗𝟗 is an example.) 

�̄� = 𝑷(𝟐𝟎𝟎) (�̄�: stationary value)  

�̄� = 𝝃(𝟐𝟎𝟎) (�̄�: stationary value) 
�̂�(𝟎) = 𝟎 (Initial value of �̂�(𝒌) at 𝒌 = 𝟎) 

�̂�(𝒌) = 𝑪�̂�(𝒌) 

�̂�(𝒌) = 𝑨�̂�(𝒌 − 𝟏) + 𝑮�̂�(𝒌 − 𝟏) + 𝑲(𝒛(𝒌 − 𝟏) − 𝑪�̂�(𝒌 − 𝟏)), 
 

�̂�(𝒌) = 𝑹−𝟏(𝒌)𝑮𝑻{(𝑨𝑻)−𝟏[𝑨𝐓�̄�(𝑰 − 𝑮𝑹−𝟏(𝒌)𝑮𝑻�̄�)−𝟏𝑨+ 𝑪𝑻𝑸(𝒌)𝑪] −

𝑪𝑻𝑸(𝒌)𝑪}�̂�(𝒌) + 𝑹−𝟏(𝒌)𝑮𝑻(𝐀𝑻)−𝟏{𝑨𝑻�̄�(𝑰 −
𝑮𝑹−𝟏(𝒌)𝑮𝑻�̄�)−𝟏𝑮𝑹−𝟏(𝒌)𝑮𝑻�̄� + 𝐀𝐓�̄� − 𝑪𝑻𝑸(𝒌)𝜼(𝒌)} +

𝑹−𝟏(𝒌)𝑮𝑻(𝑨𝑻)−𝟏𝑪𝑻𝑸(𝒌)𝜼(𝒌), 
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4. NUMERICAL SIMULATION EXAMPLES 

EXAMPLE 1 

Let the state equation for 𝑥(𝑘) and the output equation for 𝑧(𝑘)  be given by: 

  

[
𝑥1(𝑘 + 1)
𝑥2(𝑘 + 1)

] = [
0 1

−0.4 −1.3
] [
𝑥1(𝑘)
𝑥2(𝑘)

] + [
0 0
1 1

] [
𝑢1(𝑘)
𝑢2(𝑘)

] , 

𝑧(𝑘) = [1 1] [
𝑥1(𝑘)
𝑥2(𝑘)

]. 
(23) 

The system in Eq. (23) satisfies the controllability and observability conditions. It is worth 

noting that the exogenous input 𝑢2(𝑘) is added to the control input 𝑢1(𝑘). The estimate  

𝑥(𝑘) = [
𝑥1(𝑘)
𝑥2(𝑘)

]  of the state 𝑥(𝑘)  and the estimate �̂�(𝑘) = [
�̂�1(𝑘)

�̂�2(𝑘)
]  of 𝑢(𝑘) = [

𝑢1(𝑘)
𝑢2(𝑘)

]  are 

calculated by substituting the system matrix 𝐴 = [
0 1

−0.4 −1.3
], the input matrix           𝐺 =

[
0 0
1 1

], the observation vector C = [1 1] , 𝑅(𝑘) = [
�̃�(𝑘) 0

0 −𝛾2
] , 𝑄(𝑘) = 1  and the desired 

value 𝜂(𝑘) = 10 into the H-infinity linear QTC algorithm of Theorem 2. For the gain 𝐾, the 

eigenvalues of 𝐴 − 𝐾𝐶 in the state observer of Eq. (22) are set to 0.7 and 0.8. Since the poles of 

𝐴 − 𝐾𝐶 are within the unit circle, 𝐴 − 𝐾𝐶 is a stable matrix. From the duality between control 

and estimation, the Octave commands “Po=[0.7 0.8]'”, “pkg load control”, and 

“K=place(A',C',Po)'” calculate the state observer gain as 𝐾 = [
−29.6
26.8

]. The pole placement 

method is based on Ackermann’s formula [21]. Fig. 3 illustrates the estimate �̂�(𝑘) of the 

output 𝑧(𝑘)  vs. 𝑘  for 𝑅(𝑘) = [
�̃�(𝑘) 0

0 −𝛾2
] , �̃�(𝑘) = 0.0001, 𝛾 = 10,  by the H-infinity linear 

QTC algorithm of Theorem 2, and the H-infinity LQT [15] for 𝛾 = 10, �̃�(𝑘) = 0.0001, the 

discount factor 1  and 𝑄𝑥 = [
𝐼2×2 −𝐼2×2
−𝐼2×2 𝐼2×2

]  in [15]. Here, Eqs. (23), (24) and (26) in [15] 

compute the control input and exogenous input. For  𝛾 = 10 the estimate �̂�(𝑘) by the H-

infinity linear QTC algorithm of Theorem 2 tracks the desired value better than �̂�(𝑘) by the 

H-infinity LQT [15]. Table 1 shows the mean-square values (MSVs) of the output estimation 

errors 𝑧(𝑘) − �̂�(𝑘) and the tracking errors 𝜂(𝑘) − �̂�(𝑘), 1 ≤ 𝑘 ≤ 1200, by the H-infinity linear 

QTC algorithm of Theorem 2. Here, we compute 𝑧(𝑘) = 𝐶𝑥(𝑘), 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐺𝑢(𝑘), for 

𝛾 = 0.02,  𝛾 = 10 , and 𝛾 = 100  under the conditions �̃�(𝑘) = 0.0001 or �̃�(𝑘) = 0.1 . In the 

computation of 𝑢(𝑘) with Eq. (19), 𝑥(𝑘) is used instead of the state observer estimate 𝑥(𝑘). 

For each value of 𝛾, the MSV of 𝑧(𝑘) − �̂�(𝑘) is 0. This result indicates that the observer 

estimate �̂�(𝑘)  coincides with 𝑧(𝑘) . For �̃�(𝑘) = 0.0001 , the MSVs of 𝜂(𝑘) − �̂�(𝑘)  are quite 

small for 𝛾 = 0.02, 𝛾 = 10, and 𝛾 = 100, indicating that the linear QTC algorithm of Theorem 

2 has high tracking accuracy. In the case of �̃�(𝑘) = 0.1, the MSV of 𝜂(𝑘) − �̂�(𝑘) for 𝛾 = 0.02 is 

considerably smaller than the MSV for 𝛾 = 10. It is seen that this is the effect of the H-infinity 

linear quadratic tracking controller. Table 2 shows the MSVs of tracking errors 𝜂(𝑘) − �̂�(𝑘), 

1 ≤ 𝑘 ≤ 1200, by the H-infinity LQT [15]. Here, we compute 𝑧(𝑘) = 𝐶𝑥(𝑘), x(𝑘 + 1) = 𝐴𝑥(𝑘) +

𝐺𝑢(𝑘) , for  𝛾 = 0.02,  𝛾 = 10 , and 𝛾 = 100  under the conditions �̃�(𝑘) = 0.0001, 𝑅(𝑘) =

[
�̃�(𝑘) 0

0 −𝛾2
], the discount factor 𝜆 = 1, and 𝑄𝑥 = [

𝐼2×2 −𝐼2×2
−𝐼2×2 𝐼2×2

] in [15]. 𝑢(𝑘) consists of the 

control input and the exogenous input, computed by Eqs. (23), (24) and (26) in [15]. The MSV 
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4.6548 × 10−6  by the H-infinity linear QTC algorithm of Theorem 2 for 𝛾 = 100 ,            

�̃�(𝑘) = 0.0001 is considerably smaller than the MSV 0.0211 by the H-infinity LQT [15] for 

𝛾 = 100 , �̃�(𝑘) = 0.0001 . Thus, for 𝛾 = 100 , �̃�(𝑘) = 0.0001 , the tracking accuracy of the        

H-infinity LQT of Theorem 2 is superior to that of the H-infinity LQT [15] as well as for 

𝛾 = 10 , �̃�(𝑘) = 0.0001 . The MSVs of 𝜂(𝑘) − �̂�(𝑘) for 𝛾 = 10  and 𝛾 = 100  in the case of  

�̃�(𝑘) = 0.0001 by the H-infinity linear QTC algorithm of Theorem 2 have the same value 

4.6548 × 10−6. This indicates that the H-infinity linear QTC algorithm of Theorem 2 reduces 

to the linear QTC algorithm for larger γ values.  
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Proposed H-ininity tracker for Gamma=10

H-infinity tracker by Liu et al. [15] for Gamma=10

 

Fig. 3. Estimate �̂�(𝑘) of output 𝑧(𝑘) vs. 𝑘 for 𝑅(𝑘) = [
�̃�(𝑘) 0

0 −𝛾2
] , �̃�(𝑘) = 0.0001, 𝛾 = 10 by H-infinity linear QTC 

algorithm of Theorem 2, and the H-infinity LQT [15] for �̃�(𝑘) = 0.0001,  𝛾 = 10, the discount factor 1, and 

𝑄𝑥 = [
𝐼2×2 −𝐼2×2
−𝐼2×2 𝐼2×2

] in [15]. 

 
Table 1. Mean-square values of estimation errors  𝑧(𝑘) − �̂�(𝑘) and tracking errors 𝜂(𝑘) − �̂�(𝑘),  

1 ≤ 𝑘 ≤ 1200, by H-infinity linear QTC algorithm of Theorem 2. 𝑧(𝑘) = 𝐶𝑥(𝑘), x(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐺�̂�(𝑘). 

 𝛾 = 0.02 𝛾 = 10 𝛾 = 100 

MSV of  

𝑧(𝑘) − �̂�(𝑘) 

MSV of 

 𝜂(𝑘) − �̂�(𝑘) 

MSV of  

𝑧(𝑘) − �̂�(𝑘) 

MSV of  

𝜂(𝑘) − �̂�(𝑘) 

MSV of  

𝑧(𝑘) − �̂�(𝑘) 

MSV of  

𝜂(𝑘) − �̂�(𝑘) 

�̃�(𝑘) = 0.0001 0 7.9707 × 10−6 0 4.6548 × 10−6 0 4.6548 × 10−6 

�̃�(𝑘) = 0.1 0 4.6006 × 10−4 0 2.3801 0 2.3761 

 
Table 2. Mean-square values of tracking errors  𝜂(𝑘) − 𝑧(𝑘), 1 ≤ 𝑘 ≤ 1200. 𝑧(𝑘) = 𝐶𝑥(𝑘) by H-infinity LQT 

[15] for the discount factor 𝜆 = 1, and 𝑄𝑥 = [
𝐼2×2 −𝐼2×2
−𝐼2×2 𝐼2×2

] in [15]. 

 
MSV of  

𝜂(𝑘) − �̂�(𝑘) for 𝛾 = 0.02 

MSV of  

𝜂(𝑘) − �̂�(𝑘) for 𝛾 = 10 

MSV of  

𝜂(𝑘) − �̂�(𝑘) for 𝛾 = 100 

�̃�(𝑘) = 0.0001 divergence 1.0698 0.0211 

 

Fig. 4 illustrates the estimate �̂�1(𝑘)  of the control input 𝑢1(𝑘)  vs. 𝑘  for                     

𝑅(𝑘) = [
�̃�(𝑘) 0

0 −𝛾2
] , �̃�(𝑘) = 0.0001, 𝛾 = 10  by the H-infinity linear QTC algorithm of 
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Theorem 2. Fig. 5 illustrates the estimate �̂�2(𝑘)  of the exogenous input 𝑢2(𝑘)  vs. 𝑘  for 

𝑅(𝑘) = [
�̃�(𝑘) 0

0 −𝛾2
] , �̃�(𝑘) = 0.0001, 𝛾 = 10  by the H-infinity linear QTC algorithm of 

Theorem 2. Fig. 6 illustrates the estimate �̂�(𝑘)  of the output 𝑧(𝑘)  vs. 𝑘  for 

𝑅(𝑘) = [
�̃�(𝑘) 0

0 −𝛾2
] , �̃�(𝑘) = 0.0001, 𝛾 = 0.02  by the H-infinity linear QTC algorithm of 

Theorem 2. Fig. 7 illustrates the estimate �̂�1(𝑘)  of the control input 𝑢1(𝑘)  vs. 𝑘  for           

𝑅(𝑘) = [
�̃�(𝑘) 0

0 −𝛾2
] , �̃�(𝑘) = 0.0001, 𝛾 = 0.02  by the H-infinity linear QTC algorithm of 

Theorem 2. Fig. 8 illustrates the estimate �̂�2(𝑘)  of the exogenous input 𝑢2(𝑘)  vs. 𝑘  for 

𝑅(𝑘) = [
�̃�(𝑘) 0

0 −𝛾2
] , �̃�(𝑘) = 0.0001, 𝛾 = 0.02  by the H-infinity linear QTC algorithm of 

Theorem 2.  
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Fig. 4. Estimate �̂�1(𝑘) of control input 𝑢1(𝑘) vs. 𝑘 for 𝑅(𝑘) = [

�̃� 0
0 −𝛾2

] , �̃�(𝑘) = 0.0001, 𝛾 = 10 by H-infinity linear 

QTC algorithm of Theorem 2. 
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Fig. 5. Estimate �̂�2(𝑘) of exogenous input 𝑢2(𝑘) vs. 𝑘 for 𝑅(𝑘) = [
�̃�(𝑘) 0

0 −𝛾2
] , �̃�(𝑘) = 0.0001, 𝛾 = 10 by H-infinity 

linear QTC algorithm of Theorem 2. 
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Fig. 6. Estimate �̂�(𝑘) of output 𝑧(𝑘) vs. 𝑘 for 𝑅(𝑘) = [
�̃�(𝑘) 0

0 −𝛾2
] , �̃�(𝑘) = 0.0001, 𝛾 = 0.02 by H-infinity linear 

QTC algorithm of Theorem 2. 
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Fig. 7. Estimate �̂�1(𝑘) of control input 𝑢1(𝑘) vs. 𝑘 for 𝑅(𝑘) = [
�̃�(𝑘) 0

0 −𝛾2
] , �̃�(𝑘) = 0.0001, 𝛾 = 0.02 by H-infinity 

linear QTC algorithm of Theorem 2. 
 

0 10 20 30 40 50 60 70 80 90 100
-5

-4.8

-4.6

-4.4

-4.2

-4

-3.8

-3.6

-3.4

-3.2

Time [k]

Es
tim

at
e 

of
 u

2(k
)

 

Fig. 8. Estimate �̂�2(𝑘) of exogenous input 𝑢2(𝑘) vs. 𝑘 for 𝑅(𝑘) = [
�̃�(𝑘) 0

0 −𝛾2
] , �̃�(𝑘) = 0.0001, 𝛾 = 0.02 by  

H-infinity linear QTC algorithm of Theorem 2. 
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Figs. 3 and 6 show that, when �̃�(𝑘) = 0.0001, the output estimate �̂�(𝑘) waveforms by 

the H-infinity linear QTC algorithm of Theorem 2 are almost the same for 𝛾 = 10  and 

𝛾 = 0.02.  

Table 3 shows the mean values of  �̂�1(𝑘) and �̂�2(𝑘), 1 ≤ 𝑘 ≤ 1200, under the conditions 

�̃�(𝑘) = 0.0001  or �̃�(𝑘) = 0.1  by the H-infinity linear QTC algorithm of Theorem 2. For 

𝛾 = 10 and �̃�(𝑘) = 0.0001, the average absolute value of �̂�2(𝑘) is found to be much smaller 

than for 𝛾 = 0.02  and �̃�(𝑘) = 0.0001 , 1.3494 × 10−5  versus 4.4979 . For γ = 10 and          

�̃�(𝑘) = 0.0001, the mean value of �̂�1(𝑘) is smaller than for 𝛾 = 0.02 and �̃�(𝑘) = 0.0001, being 

13.4944 versus 17.9914. For larger values of 𝛾, such as 𝛾 = 10, the average absolute value of 

the exogenous input becomes so small that the exogenous input is almost negligible, and the 

H-infinity LQT is reduced to the LQT. From Eq. (3) this tendency can be understood by the 

relationship in Eq. (24). For the large value of 𝛾, the denominator is small in comparison with 

the numerator.  

 
∑ (𝜂(𝑘) − 𝑧(𝑘))𝑇𝑄(𝑘)(𝜂(𝑘) − 𝑧(𝑘))𝐿
𝑘=0 + ∑ 𝑢1

𝑇𝐿
𝑘=0 (𝑘)�̃�(𝑘)𝑢1(𝑘)

∑ 𝑢2
𝑇(𝑘)𝐿

𝑘=0 𝑢2(𝑘)
≤ 𝛾2 (24) 

If 𝛾 is set to a small value, e.g., 0.01, the H infinity LQT diverges. 

 
Table 3. Mean values of  �̂�1(𝑘) and �̂�2(𝑘), 1 ≤ 𝑘 ≤ 1200, by H-infinity linear QTC algorithm of Theorem 2. 

 
𝛾 = 0.02 𝛾 = 10 

Mean of �̂�1(𝑘) Mean of �̂�2(𝑘) Mean of �̂�1(𝑘) Mean of �̂�2(𝑘) 

�̃�(𝑘) = 0.0001 17.9914 −4.4979 13.4944 −1.3494 × 10−5 

�̃�(𝑘) = 0.1 -0.0542 13.5594 11.4262 −0.0114 

EXAMPLE 2 

In this simulation example, the H-infinity linear QTC algorithm of Theorem 2 is applied 

to the F16 aircraft discrete-time state-space model [9, 11] in (1) with  

 

𝐴 = [
0.906488 0.0816012 −0.0005
0.0741349 0.90121 −0.0007083

0 0 0.132655
], 

𝐺 = [
−0.00150808 0.00951892
−0.0096 0.00038373
0.867345 0

], 

𝐶 = [1 0 0]. 

(25) 

The observer poles of 𝐴 − 𝐾𝐶 in this simulation example are set to 0.7, 0.8 and 0.6. The state 

𝑥(𝑘) = [

𝛼(𝑘)
𝑞(𝑘)
𝛿𝑐(𝑘)

] has three components, i.e., the angle of attack  𝛼(𝑘), the rate of pitch 𝑞(𝑘), and 

the elevator angle of deflection 𝛿𝑐(𝑘). The output 𝑧(𝑘) of the system is the angle of attack 𝛼(𝑘). 

The desired value of 𝛼(𝑘) is set to 𝜂(𝑘) = 0.1 [𝑟𝑎𝑑]. Let 𝑄(𝑘) = 1. Fig. 9 illustrates the estimate 

�̂�(𝑘)  of the output 𝑧(𝑘)  vs. 𝑘  for 𝑅(𝑘) = [
�̃�(𝑘) 0

0 −𝛾2
] , �̃�(𝑘) = 0.0001, 𝛾 = 0.1 . Fig. 10 

illustrates the estimate �̂�1(𝑘) of the control input 𝑢1(𝑘) vs. 𝑘 for 𝑅(𝑘) = [
�̃�(𝑘) 0

0 −𝛾2
] ,  �̃�(𝑘) =

0.0001, 𝛾 = 0.1. Fig. 11 illustrates the estimate �̂�2(𝑘) of the exogenous input 𝑢2(𝑘) vs. 𝑘 for 

𝑅(𝑘) = [
�̃�(𝑘) 0

0 −𝛾2
] , �̃�(𝑘) = 0.0001, 𝛾 = 0.1. Fig. 12 illustrates the estimate �̂�(𝑘) of the output 
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𝑧(𝑘)  vs. 𝑘  for 𝑅(𝑘) = [
�̃�(𝑘) 0

0 −𝛾2
] , �̃�(𝑘) = 0.0001, 𝛾 = 10 . Fig. 13 illustrates the estimate 

�̂�1(𝑘) of the control input 𝑢1(𝑘) vs. 𝑘 for 𝑅(𝑘) = [
�̃�(𝑘) 0

0 −𝛾2
] , �̃�(𝑘) = 0.0001, 𝛾 = 10. Fig. 14 

illustrates the estimate �̂�2(𝑘)  of the exogenous input 𝑢2(𝑘)  vs. 𝑘  for 

𝑅(𝑘) = [
�̃�(𝑘) 0

0 −𝛾2
] , �̃�(𝑘) = 0.0001, 𝛾 = 10. Rise time and overshoot of �̂�(𝑘) in Figs. 9 and 12 

are almost the same. The waveforms of  �̂�1(𝑘) in Figs. 10 and 13 are almost the same. In 

comparison with the waveform of �̂�2(𝑘) for 𝛾 = 0.1 in Fig. 11, the absolute value of �̂�2(𝑘) for 

𝛾 = 10 in Fig. 14 is considerably small in the stationary state.  
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Fig. 9. Estimate �̂�(𝑘) of output 𝑧(𝑘) vs. 𝑘 for 𝑅(𝑘) = [
�̃�(𝑘) 0

0 −𝛾2
] , �̃�(𝑘) = 0.0001, 𝛾 = 0.1. 
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Fig. 10. Estimate �̂�1(𝑘) of control input 𝑢1(𝑘) vs. 𝑘 for 𝑅(𝑘) = [
�̃�(𝑘) 0

0 −𝛾2
] , �̃�(𝑘) = 0.0001, 𝛾 = 0.1. 
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Fig. 11. Estimate �̂�2(𝑘) of exogenous input 𝑢2(𝑘) vs. 𝑘 for 𝑅(𝑘) = [
�̃�(𝑘) 0

0 −𝛾2
] , �̃�(𝑘) = 0.0001, 𝛾 = 0.1. 
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Fig. 12. Estimate �̂�(𝑘) of output 𝑧(𝑘) vs. 𝑘 for 𝑅(𝑘) = [
�̃�(𝑘) 0

0 −𝛾2
] , �̃�(𝑘) = 0.0001, 𝛾 = 10. 
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Fig. 13. Estimate �̂�1(𝑘) of control input 𝑢1(𝑘) vs. 𝑘 for 𝑅(𝑘) = [
�̃�(𝑘) 0

0 −𝛾2
] , �̃�(𝑘) = 0.0001, 𝛾 = 10. 
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Fig. 14. Estimate �̂�2(𝑘) of exogenous input 𝑢2(𝑘) vs. 𝑘 for 𝑅(𝑘) = [
�̃�(𝑘) 0

0 −𝛾2
] , �̃�(𝑘) = 0.0001, 𝛾 = 10. 

 

Table 4 shows the MSVs of the estimation errors 𝑧(𝑘) − �̂�(𝑘) and the tracking errors 

𝜂(𝑘) − �̂�(𝑘) , 1 ≤ 𝑘 ≤ 1200.  𝑧(𝑘) = 𝐶𝑥(𝑘) , x(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐺�̂�(𝑘 ), for 𝛾 = 0.05 ,  𝛾 = 0.1 , 

𝛾 = 0.5, and 𝛾 = 10 under the condition �̃�(𝑘) = 0.0001. For each value of 𝛾 , the MSV of 

𝑧(𝑘) − �̂�(𝑘) is zero, indicating that the observer estimate �̂�(𝑘) is equivalent to 𝑧(𝑘). The MSV 

of 𝜂(𝑘) − �̂�(𝑘) is quite small for each value of 𝛾. This result shows that the output estimate  

�̂�(𝑘) tracks the desired value 𝜂(𝑘) with high accuracy. Table 5 shows the mean values of  

�̂�1(𝑘) and �̂�2(𝑘), 1 ≤ 𝑘 ≤ 1200, under the condition �̃�(𝑘) = 0.0001. The mean values of �̂�1(𝑘) 

for 𝛾 = 0.05, 𝛾 = 0.1, 𝛾 = 0.5, and 𝛾 = 10 are almost identical. For the mean values of �̂�2(𝑘), 

as the value of 𝛾 increases, the absolute mean value of  �̂�2(𝑘) becomes small.  

 
Table 4. Mean-square values of estimation errors 𝑧(𝑘) − �̂�(𝑘) and tracking errors 𝜂(𝑘) − �̂�(𝑘), 1 ≤ 𝑘 ≤ 1200. 

𝑧(𝑘) = 𝐶𝑥(𝑘), x(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐺�̂�(𝑘) 

 MSV of 𝑧(𝑘) − �̂�(𝑘) MSV of 𝜂(𝑘) − �̂�(𝑘) 

�̃�(𝑘) = 0.0001 

𝛾 = 0.05 0 2.0585 × 10−5 

𝛾 = 0.1 0 1.6006 × 10−5 

𝛾 = 0.5 0 1.4914 × 10−5 

𝛾 = 10 0 1.4871 × 10−5 

 

Table 5. Mean values of  �̂�1(𝑘) and �̂�2(𝑘), 1 ≤ 𝑘 ≤ 1200.  

 Mean of �̂�1(𝑘) Mean of �̂�2(𝑘) 

�̃�(𝑘) = 0.0001 

𝛾 = 0.05 --0.3338 −0.0145 

𝛾 = 0.1 -0.3204 −0.0035 

𝛾 = 0.5 -0.3205 −1.3646 × 10−4 

𝛾 = 10 -0.3204 −3.4095 × 10−7 
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5. CONCLUSIONS 

This paper proposed a new H-infinity linear QTC algorithm in linear discrete-time 

systems. The presented algorithm is a counterpart to the H-infinity linear QTC algorithm in 

linear continuous-time systems based on the integral equation approach. As shown in 

section 2, setting the first variation of the value function to 0 provided the necessary 

condition for the optimal control and exogenous inputs. From the equations transformed 

from the necessary condition, Theorem 1 showed that the control and exogenous inputs in 

the H-infinity linear QTC problem are given by solving the TPBVP. Theorem 2 presented the 

H-infinity linear QTC algorithm for the control and exogenous inputs. The inputs used the 

information of the two functions, each computed in the reverse direction in time from the 

terminal conditions. The control and exogenous inputs used the information of the state. The 

state observer estimated the state with the output of the system. The inequality as the 

sufficient condition for the value function to be optimal for the control and exogenous inputs 

was also presented in section 2. 

Two numerical simulation examples showed the tracking control characteristics of the 

proposed H-infinity linear QTC algorithm of Theorem 2. In the first example, when        

�̃�(𝑘) = 0.0001 , the MSV of the tracking error showed that the H-infinity linear QTC 

algorithm of Theorem 2 is superior to the existing H-infinity LQT in tracking accuracy for 

𝛾 = 10 and 𝛾 = 100, respectively. In the second example, when �̃�(𝑘) = 0.0001, the MSV of 

the tracking errors by the H-infinity linear QTC algorithm of Theorem 2 showed that it tracks 

the desired value with high accuracy for 𝛾 = 0.05, 𝛾 = 0.1, 𝛾 = 0.5, and 𝛾 = 50, respectively.  

APPENDIX A: PROOF OF THEOREM 1 

Introducing an 𝑚 ×𝑚 matrix 𝑅(𝑘) satisfying Eq. (A-1) and using Eqs. (10), (11), (A-2), 

and (A-3), Eq. (12) is rewritten as in Eq. (A-4). 

  𝑅(𝑘) = 𝐺𝑇𝐵(𝑘)𝐺 (A-1) 

 

�̃�(𝑘, 𝑗) = {
�̃�1(𝑘, 𝑗),0 ≤ 𝑗 ≤ 𝑘 ≤ 𝐿,

�̃�2(𝑘, 𝑗),0 ≤ 𝑘 ≤ 𝑗 ≤ 𝐿
 

               =

{
 
 

 
 ∑ Φ𝑇(𝑖, 𝑘 + 1)𝐶𝑇𝑄(𝑖)𝐶Φ(𝑖, 𝑗 + 1)

𝐿

𝑖=𝑘+1

, 0 ≤ 𝑗 ≤ 𝑘 ≤ 𝐿,

∑ Φ𝑇(𝑖, 𝑘 + 1)𝐶𝑇𝑄(𝑖)𝐶Φ(𝑖, 𝑗 + 1)

𝐿

𝑖=𝑗+1

, 0 ≤ 𝑘 ≤ 𝑗 ≤ 𝐿

 

(A-2) 

 �̃�(𝑘 + 1) = − ∑ Φ𝑇(𝑖, 𝑘 + 1)𝐶𝑇𝑄(𝑖)(𝐶Φ(𝑖, 0)𝑐 − 𝜂(𝑖))

𝐿

𝑖=𝑘+1

 (A-3) 

 𝐺𝑇(𝐵(𝑘)𝐺𝑢(𝑘) +∑�̃�1(𝑘, 𝑗)𝐺𝑢(𝑗)

𝑘

𝑗=0

+ ∑ �̃�2(𝑘, 𝑗)𝐺𝑢(𝑗))

𝐿

𝑗=𝑘+1

= 𝐺𝑇�̃�(𝑘 + 1) (A-4) 

Here, the notations �̆�(k) and �̆�(j) in Eq. (12) are replaced with 𝑢(𝑘) and 𝑢(𝑗), respectively. 

The sufficient condition for Eq. (A-4) to hold is given by: 

 𝐵(𝑘)𝐺𝑢(𝑘) + ∑ �̃�1(𝑘, 𝑗)𝐺𝑢(𝑗)
𝑘
𝑗=0 +∑ �̃�2(𝑘, 𝑗)𝐺𝑢(𝑗)

𝐿
𝑗=𝑘+1 = �̃�(𝑘 + 1). (A-5) 

Introducing 

 𝛼(𝑘 + 1) = 𝐵(𝑘)𝐺𝑢(𝑘), (A-6) 
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we have 

 𝛼(𝑘 + 1) + ∑ �̃�1(𝑘, 𝑗)𝐺𝑢(𝑗)
𝑘
𝑗=0 +∑ �̃�2(𝑘, 𝑗)𝐺𝑢(𝑗)

𝐿
𝑗=𝑘+1 = �̃�(𝑘 + 1). (A-7) 

Subtracting the equation obtained by putting 𝑘 → 𝑘 − 1 in Eq. (A-7) from Eq. (A-7) and 

noting �̃�1(𝑘, 𝑘)𝐺𝑢(𝑘) − �̃�2(𝑘, 𝑘)𝐺𝑢(𝑘) = 0 from Eq. (A-2), we have: 

 

𝛼(𝑘 + 1) − 𝛼(𝑘) +∑(�̃�1(𝑘, 𝑗) − �̃�1(𝑘 − 1, 𝑗))𝐺𝑢(𝑗)

𝑘−1

𝑗=0

+∑(�̃�2(𝑘, 𝑗) − �̃�2(𝑘 − 1, 𝑗)) 𝐺𝑢(𝑗)

𝐿

𝑗=𝑘

= �̃�(𝑘 + 1) − �̃�(𝑘). 

(A-8) 

From Eq. (A-2), we obtain Eqs. (A-9) and (A-10). 

 

�̃�1(𝑘, 𝑖) − �̃�1(𝑘 − 1, 𝑖) 

              = (𝐼 − A𝑇) ∑ Φ𝑇(𝑗, 𝑘 + 1)𝐶𝑇𝑄(𝑗)𝐶Φ(𝑗, 𝑖 + 1) −

𝐿

𝑗=𝑘+1

𝐶𝑇𝑄(𝑘)𝐶Φ(𝑘, 𝑖 + 1) 

              = (𝐼 − A𝑇)�̃�1(𝑘, 𝑖) − 𝐶
𝑇𝑄(𝑘)𝐶Φ(𝑘, 𝑖 + 1) 

(A-9) 

 �̃�2(𝑘, 𝑗) − �̃�2(𝑘 − 1, 𝑗) = (𝐼 − 𝐴
𝑇) �̃�2(𝑘, 𝑗) (A-10) 

Substituting Eqs. (A-9) and (A-10) into Eq. (A-8), we have: 

 
𝛼(𝑘 + 1) − 𝛼(𝑘) + (𝐼 − A𝑇)∑�̃�(𝑘, 𝑗)𝐺𝑢(𝑗)

𝐿

𝑗=0

− 𝐶𝑇𝑄(𝑘)𝐶∑Φ(𝑘, 𝑗 + 1)

𝑘−1

𝑗=0

𝐺𝑢(𝑗)

= �̃�(𝑘 + 1) − �̃�(𝑘). 

(A-11) 

From Eq. (A-3), we obtain the equation for �̃�(𝑘). 

 �̃�(𝑘) = A𝑇�̃�(𝑘 + 1) − 𝐶𝑇𝑄(𝑘)(𝐶Φ(𝑘, 0)𝑐 − 𝜂(𝑘)) (A-12) 

From Eqs. (A-11), (A-12) and the relationship 𝑥(𝑘) = Φ(𝑘, 0)𝑐 + ∑ Φ(𝑘, 𝑖 + 1)𝐺𝑢(𝑖)k−1
k=0 , after 

some manipulations, we get: 

 𝛼(𝑘) = A𝑇𝛼(𝑘 + 1) − 𝐶𝑇𝑄(𝑘)(𝐶𝑥(𝑘) − 𝜂(𝑘)). (A-13) 

In Eq. (A-7), for 𝑘 = 𝐿, from Eq. (A-2), �̃�1(𝐿, 𝑗)=0 and ∑ �̃�2(𝐿, 𝑗)𝐺𝑢(𝑗)
𝐿
𝑗=𝐿+1 = 0 are clear. Also, 

from Eq. (A-3), �̃�(𝐿 + 1) = 0 hods. Hence, 𝛼(𝐿 + 1) = 0. From Eqs. (A-1) and (A-6), we have 

𝑢(𝑘) = 𝑅−1(𝑘)𝐺𝑇𝛼(𝑘 + 1) . According to 𝑅 = [
�̃� 0
0 −𝛾2

]  and 𝑢(𝑘) = [
𝑢1(𝑘)
𝑢2(𝑘)

]  in Eq. (1), we 

obtain Eq. (15) for the control input 𝑢1(𝑘) and Eq. (16) for the exogenous input 𝑢2(𝑘).  

APPENDIX B: PROOF OF THEOREM 2 

Let 𝛼(𝑘) be expressed by:  

 𝛼(𝑘) = 𝑃(𝑘)𝑥(𝑘) + 𝜉(𝑘). (B-1) 

Substituting Eq. (B-1) into Eq. (13), we have: 

 𝑃(𝑘)𝑥(𝑘) + 𝜉(𝑘) = A𝑇(𝑃(𝑘 + 1)𝑥(𝑘 + 1) + 𝜉(𝑘 + 1)) − 𝐶𝑇𝑄(𝑘)(𝐶𝑥(𝑘) − 𝜂(𝑘)). (B-2) 

From 𝑢(𝑘) = 𝑅−1(𝑘)𝐺𝑇𝛼(𝑘 + 1) and Eq. (B-1), we have: 

 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐺𝑢(𝑘) 

                  = 𝐴𝑥(𝑘) + 𝐺𝑅−1(𝑘)𝐺𝑇𝛼(𝑘 + 1) 

                  = 𝐴𝑥(𝑘) + 𝐺𝑅−1(𝑘)𝐺𝑇(𝑃(𝑘 + 1)𝑥(𝑘 + 1) + 𝜉(𝑘 + 1)). 

(B-3) 

From Eq. (B-3), 𝑥(𝑘 + 1) is expressed as: 

 𝑥(𝑘 + 1) = (𝐼 − 𝐺𝑅−1(𝑘)𝐺𝑇𝑃(𝑘 + 1))−1(𝐴𝑥(𝑘) + 𝐺𝑅−1(𝑘)𝐺𝑇𝜉(𝑘 + 1)). (B-4) 

Substituting Eq. (B-4) into Eq. (B-2) and equating the 𝑥(𝑘) terms on the left and right sides, 
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we obtain Eq. (20) for 𝑃(𝑘). In this case, the terms on the left and right sides, except for the 

𝑥(𝑘) term, are equal, so we obtain Eq. (21) for 𝜉(𝑘). Since 𝛼(𝐿 + 1) = 0 in Eq. (13), we set 

𝑃(𝐿 + 1) = 0 and 𝜉(𝐿 + 1) = 0 from Eq. (B-1). 
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